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a b s t r a c t

This paper presents a novel electrochemical lithium-ion cell model which can be used in battery control
units. Based on classical single-particle approaches, a lumped-parameter nonlinear model is developed
that is able to predict accurately the terminal voltages for arbitrary loads, and even for potentiostatic oper-
ation. The key points are: (1) an incorporation of the electrolyte potential, (2) a modal decomposition
of the partial differential equation of the liquid phase lithium-ion concentration, (3) a correct handling
of the SOC-dependent diffusivity in the insertion materials of both electrodes, and (4) a consideration
of temperature-dependent kinetic processes. A combined parameter analysis and identification is suc-
xtended non-isothermal single particle
odel

OC-dependent diffusivity
umped parameter system
ombined parameter analysis and

dentification
isher-information matrix

cessfully applied for the parameterization of the model. Using a Fisher-information matrix approach in
combination with a sensitivity analysis, the identifiability of each parameter is estimated in dependence
on the measurement information. Using this information, it is possible to choose a small number of
relevant experiments which are sufficient to fully parameterize the model.

© 2010 Elsevier B.V. All rights reserved.
ensitivity analysis

. Introduction

Throughout the ongoing discussion on vehicle emissions, hybrid
r full electric drivetrains have increasingly come into the spot-
ight. Currently, lithium-ion batteries are regarded as the most
romising electrical energy storage technology due to their high
nergy and power density [1,2]. The harsh demands by the auto-
obile industry concerning safety and lifetime requirements slow

own a wider introduction of their series production for drivetrains.
hus, the state of charge (SOC), the terminal voltage, and the tem-
erature have to be accurately predicted and monitored. In this
ontext, the usage of electrochemical battery models is desirable.
hey provide excellent capabilities for predicting the cell’s short-

erm behavior (charge/discharge characteristics) and incorporate
nherent physical parameters. This enables the extension of the

odels by physics-based aging effects, e.g. by the fading of capacity
nd power [3].
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Originally, the electrochemical modeling of secondary lithium-
ion batteries was based on the theories of porous electrodes and
concentrated solutions [4]. These considerations typically lead to
distributed parameter systems, which have been investigated by
various authors [5–14]. Such a model can be reduced to a so-
called single-particle (SP) model first proposed in [15]. However,
the distributed model as well as the SP model failed in the accurate
prediction of the input/output behavior at high current rates and/or
high temperature variations.

This work is focussed on the development of an easy-to-handle
extended lumped parameter model based on the named single
particle approach. The later on presented model accurately repro-
duces the input/output behavior for the complete operating range
of a commercially available high-power lithium-ion cell. The data
evaluation of cycling experiments motivated the newly proposed
model extensions. A quick and reliable identification scheme for the
full parameter set is presented as well. This issue is addressed by the
so-called combined parameter analysis and identification [16–18].
Within this method, the Fisher-information matrix is utilized to

assess the identifiability of single parameters in dependence of
the information content of a single measurement. Moreover, the
Fisher-information matrix accounts for the expected variances and
output sensitivities of the parameters. This framework is success-
fully applied to verify the new model extensions.
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Table 1
List of symbols.

Symbol Description

aj , bj , dj Time-varying coefficients (mol m−3)
as,j Active surface area (m2)
c1/2,j Bulk lithium-ion concentration (mol m−3)
c1,s,j Surface lithium-ion concentration (mol m−3)
c∗

2,k
Temporal mode of c2 (−)

DF Diagonalized Fisher-information matrix (−)
E Expectation value (−)
f± Mean molar salt activity (m2 s−1)
Finfo Fisher-information matrix (−)
i0,j Exchange current density (A m−2)
i1/2 Cell internal current (A m−2)
I External load current (A m−2)
jj Reaction rate (mol m−2 s−1)
N Total number of data points (−)
N� Total number estimated parameters (−)
p Probability density function (−)
q1/2,j Lithium-ion flux (mol m−3)
r Independent variable, radial direction (−)
Rj Radius of active particle (m)
RSEI,j SEI film resistance (�m)
Sx/y Sensitivity w.r.t. parameters (−)
t Time (s)
t0+ Transference number (−)
T Cell temperature (K)
Tcorr Temperature correction for kinetics (−)
T∞ Ambient temperature (K)
u Input magnitude (−)
U Terminal voltage of the cell (V)
Uocp Open circuit potential (V)
V total number of experiments
x State variable vector (−)
y Output vector (−)
z Independent variable, across cell sandwich (−)
Z Transformation matrix (−)
� Variance boundary for identification (−)
�j Spatial domain in z (−)
�j Surface overpotential (V)
�min Minimum eigenvalue of Finfo (−)
˚1/2,j Electrochemical potential (V)
� Variance (−)

2

a
c
l

T
L

� Parameter vector (−)
�̂, �∗ Estimated parameter, true parameter (−)
	j Diffusion time constant (s)

. State-of-the-art electrochemical battery modeling
In this section, the physical background, modeling assumptions,
s well as the single particle approach for lithium-ion intercalation
ells are summarized. Symbols and indices employed below are
isted in Tables 1 and 2.

able 2
ist of indices.

Index Description

(.) Volume averaged magnitude
1 Related to the solid active material
2 Related to the electrolyte phase
a Active material of the anode
c Active material of the cathode
cc At the current collector of the anode
i Index of a certain parameter
j General index for spatial cell segment
k Temporal mode number
l Electrolyte phase
m General index for a phase segment
n Index of a uncorrelated parameter
s Related to the separator
w Index of a certain data point

 Index of a certain measurement
� Index of a certain output (−)
Fig. 1. Schematic drawing of a lithium-ion dual intercalation cell.

2.1. Physical background and first principle modeling

An electrochemical dual intercalation cell according to [4] con-
tains two electrically separated porous electrodes, see Fig. 1.
Whereas the anode is predominantly a graphite derivative, there
exist numerous metal oxide materials for the cathode, see e.g. [19].
Typically, both electrodes consist of a grain structure of quasi-
spheric active particles in a �m scale. Lithium ions are stored in
vacant sites of the actual crystal lattice of these active particles. A
detailed discussion on intercalation electrodes can be found in [4]
for instance. The difference in the potentials of the two electrodes
determines the terminal voltage of the cell. The concentration of
ions in the insertion materials correlates with the state of charge
(SOC). The process of charge and discharge is started by the clo-
sure of the outer electrical circuit. The lithium ions are transported
by diffusion inside the active particles along the r-axis, see Fig. 1.
The ions carrying the charge pass through the particle–electrolyte
interface according to the Butler–Volmer kinetics. Meanwhile, the
electrons are transported to the current collectors. Subsequently,
the lithium ions travel via diffusion and migration – dissolved in
the electrolyte – through the separator to the backplate electrode
along the z-axis, as shown in Fig. 1. Due to the mainly ohmic losses,
the cell consumes parts of the stored energy by dissipation, result-
ing in a self-heating phenomenon. For a better understanding of
the following text, a distributed parameter reference model [5] is
given in Appendix A.

2.2. The single particle (SP) model

In order to develop an application-oriented electrochemical cell
model, a so-called single particle model was suggested in [15]. In
this context, the electrolyte phase is neglected and each electrode is
replaced by only one representative active particle. A form ansatz as
outlined in [11] and [20] for the approximate solution of the partial
differential equation (PDE) of the solid-phase lithium-ion concen-
tration c1,j(r, t), see Eq. (A.1), paved the way for a lumped parameter
model. The volume-averaged quantities solid-phase flux q̄1,j(t) and
solid-phase lithium ion concentration c̄1,j(t) are introduced in order
to preserve the physical meaning of the state variables. The result
is a set of two ordinary differential equations (ODEs) for q̄1,j(t) and
c̄1,j(t), i.e.
d c̄1,j
dt

= −3
jj
Rs
,

d q̄1,j

dt
= −30

Ds,j

R2
j

q̄1,j −
45

2R2
j

jj,
(1)
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nd one algebraic equation for the particle surface concentration
1,s,j at r = Rj , i.e.

1,s,j = c̄1,j +
8Rj
35
q̄1,j −

Rj
35Ds,j

jj, (2)

here Ds,j is the solid phase diffusion coefficient, Rj is the particle
adius, and jj is the reaction rate according to Eq. (A.6).

. New extensions to the SP model

The extensions presented below have been introduced to
mprove the model prediction quality. First, in Section 3.1 an easy-
o-handle set of equations for the impact of the anodic electrolyte
otential to the terminal voltage of the cell is derived. Section 3.2
utlines the necessity for variable diffusion speeds in the solid
nsertion materials with respect to the SOC. In Section 3.3, a simple
hermal model is derived. It newly accounts for the temperature
ependence of the kinetic [22] as well as of the ion transport pro-
esses. Finally, in Section 3.4 the model equations are presented in
nonlinear state space form.

.1. Approximate solution for the electrolyte potential and the
lectrolyte lithium-ion concentration

In the original SP model as introduced in Section 2.2 the elec-
rolyte potential˚2,j is completely neglected. But, for high current
ates the charge transfer of lithium-ions across the solid-electrolyte
nterface and thus, the terminal voltage U of the lithium-ion cell is
ssentially affected by ˚2,j . Therefore, the following approximate
olution for the electrolyte potential˚2,j is applied to the SP model.
or a detailed discussion on the mathematical relation of the cell-
nternal potentials and the terminal voltage, the reader is referred
o Appendixes A and B.

The graphitic anode material of the considered cell exhibits a
ow potential ˚1,a vs. Li/Li+ in the range of 0.0–0.1 V. Simulations
f the distributed reference model according to Eqs. (A.1)–(A.7)
y the author of [23] have shown that the electrolyte potential
2,j reaches similar voltage values for high current rates. How-

ver, the potential ˚1,c of more than 4 V vs. Li/Li+ of the metal
xide cathode is always far beyond this value. Hence, the profile
cross the cell layers of the electrolyte potential˚2,j is reduced to
he relevant boundary value at the current collector of the anode,
ompare to Fig. 1. This is achieved by solving the corresponding
artial-algebraic model equation, i.e.

= −∂˚2,j

∂z
− i2,j



+ RT �
(

1 + ∂ ln fj
∂ ln c2,j

)
∂

∂z
(ln c2,j), (3)

ee also Eq. (A.4). The solution of Eq. (3) for z = 0, i.e. ˚cc2,a(t) :=
2,a(z = 0, t) yields

cc
2,a(t) = 1



·w · htot · I(t) + RT

F
ˇ[ln c2,a − ln c2,c] (4)

ith w = 1/2ha + hs + 1/2hc and ˇ = (1 + ∂ ln f±/∂ ln c2,j)(1 −
0+) = const.

The electrolyte potential obviously depends on the lithium-ion
oncentration. Thus, the underlying lithium-ion concentration dis-
ribution c2,j(z, t) in the electrolyte is approximated by a single
DE. This ODE accounts for the time coefficient of the domi-
ant mode together with its corresponding spatial eigenfunction
f the respective PDE [21]. The procedure is as follows. The elec-

rolyte concentrations c2,a = c2,a(0, t), c2,c = c2,c(htot, t) in Eq. (4)
re determined by solving the corresponding PDE in Eq. (A.2), i.e.

∂c2
∂t

= 1
�
D
∂2c2
∂z2

+ �

�
∂i2
∂z
, (5)
Fig. 2. Relaxation of the cell’s terminal voltage after a small load current I(t) = C/60
is switched off, in comparison to a fit with two time constants 	a and 	c .

by means of a modal transform as presented by the author of [21],
see Appendix C. Using the inverse modal transform the solution of
Eq. (5) can be expressed by the infinite sum

c2(z, t) ≈
∞∑
k=0

c∗2,k(t) · ϕk(z) (6)

with the temporal modes c∗2,k(t) Eq. (C.5) and the spatial eigenfunc-
tions ϕk(z), see [21]. For Eq. (5) in conjunction with its boundary
conditions (see Appendix A), it turns out that only the first two
modes k = 0,1 yield an appreciable contribution to the sum in
Eq. (6). Furthermore, the mode k = 0 degenerates to dc∗2,0/dt = 0.
Finally, the dynamic contribution of c2,j(z, t) to Eq. (4) can be
reduced to the first mode c∗2,1 which reads as:

dc∗2,1
dt

= �kc∗2,1(t) + �

�
i∗2,1(t). (7)

The derivation of Eq. (7) is discussed in detail in Appendix C as well
as the modal transform framework.

3.2. SOC-dependent apparent diffusion in the solid

The relaxation in the terminal voltage of a lithium-ion cell that
is observed after a small load current is switched off is typically a
superposition of two relaxation regimes with the time constants
	a and 	c , see Fig. 2. Usually 	c is about one order of magnitude
larger than 	a. They correspond to anodic and cathodic solid diffu-
sion coefficients Ds,j which vary with respect to the state of charge
SOCj averaged over the particle volume (see Appendix B for a dis-
cussion on SOC definitions). The following correlation yields a good
agreement of the model with measurement data of arbitrary load
profiles:

Ds,j = Ds,j,ref
2

[1 + tanh(−�j(SOCj − ıj))], (8)

where Ds,j,ref is the standard value at SOCj = 0 and T∞ = 298 K.
The values �j and ıj are constant form coefficients. They have been
determined using the parameter identification method outlined in
Section 4. In contrast to recently publicated results [24], here, the
diffusivity Ds,c of the cathode decreases gradually with increas-
ing SOCc in the whole SOCc range, as shown in Fig. 3. This can be
explained by the fact that the cell investigated contains a cathode
consisting of two different insertion materials.

According to [25], the issue of a (volatile) change in the diffusion
velocity can be interpreted as an alteration of the underlying dif-
fusion mechanism. Another possible explanation for the change in
the relaxation time constant is that the ion saturation of tiny par-
ticles shifts the average diffusion lengths (Rj) to larger values since

there always exists a certain distribution of particle sizes in the
electrodes. To verify the assumed correlation of the SOC-dependent
solid state diffusivity Eq. (8) and the voltage relaxation time con-
stants (as depicted in Fig. 2), the Einstein–Smoluchowski relation
Ds,j = R2

j
/(6 	j) as described in [25] has been applied to the voltage
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Table 3
Fixed design specific parameters.

Parameter Description

Tref Reference temperature (K)
ha Thickness of negative electrode (m)
hs Thickness of separator (m)
hc Thickness of positive electrode (m)
Ca Coulombic capacity of negative mat. (mAh g−1)
Cc,a Coulombic capacity of positive mat. a (mAh g−1)
Cc,b Coulombic capacity of positive mat. b (mAh g−1)
�a Density of neg. insertion mat. (kg m−3)
�c,a Density of pos. insertion mat. a (kg m−3)
�c,b Density of pos. insertion mat. b (kg m−3)
As Cell surface area (m2)
� Overall density of cell (kg m−3)
vc Cell volume (m3)

−1 −1

parameters of Tables 3 and 4 are assumed to be known a priori.
Below, the proper identification of 33 thermodynamic, kinetic, and
semi-empiric parameters will be dealt with.

Table 4
Physical constants.

Parameter Value Description

F 96,485 Faraday’s constant (C mol−1)
�B 5.67e−08 Stefan–Boltzmann constant (W m−2 K−4)
R 8.314 Ideal gas constant (J mol−1 K−1)

Table 5
Thermodynamic, kinetic and internal parameters.

Parameter Description

E0,a Activation energy of anodic kinetics (J)
E0,c Activation energy of cathodic kinetics (J)
E0,l Activation energy of electrolyte kinetics (J)
Ra Radius of neg. insertion mat. (m)
Rc Effective radius of pos. insertion mat. (m)
Ds,a Diff. coeff. of neg. insertion mat. (m2 s−1)
Ds,c Diff. coeff. of pos. insertion mat. (m2 s−1)
� Porosity of negative insertion material (−)]
ig. 3. Variation of the diffusion coefficients Ds,j as a function of SOCj . Comparison
etween the Einstein–Smoluchowski relation, applied to the voltage relaxation, and
he form ansatz Eq. (8) identified for arbitrary current loads.

elaxation data of the cell, see also Fig. 3. For this verification, the
attery was partially discharged by a constant current of I = C/60,
ollowed by rest phases with I = 0.

.3. Balance equation for the temperature considering radiation

The consideration of heat generation within this model is
educed to ohmic heating Pel as the only source term. Other source
erms such as the reaction heat outlined for instance in [26], could
ot be identified during cycling experiments. Regarding the heat

osses, the radiation heat transfer Q̇rad as it is described in [27,28]
as found to be in the same order of magnitude as convection Q̇conv.
ence, the first law of thermodynamics for closed systems can be
pplied which yields

dT

dt
= As
�vcCp

[
Pel + Q̇conv + Q̇rad

]
, (9)

ith Pel = Ael/As �� I, Q̇conv = htc(T∞ − T), and Q̇rad = �rad �B(T4∞ −
4). Here, �� = �c − �a is the effective overpotential according to
q. (A.7).

.3.1. Arrhenius-type temperature correction for the reaction
inetics

The cell temperature Eq. (9) is utilized to account for speed
ariations of the reaction kinetics and transport processes, i.e.
s,j = Ds,j(Tcorr), i0,j = i0,j(Tcorr), and 
 = 
(Tcorr). This is reached by
n Arrhenius-type dimensionless correction term as outlined in
29] according to

corr(T(t)) = exp
[
E0,m

R

(
1
Tref

− 1
T(t)

)]
, (10)

ith E0,m being the activation energy of the respective domain
∈ a, c, l 1 at the reference temperature Tref ≈ 298 K, see e.g. [29].

.4. Nonlinear model structure
From a control-theoretical point of view, the proposed system
qs. (1)–(10) represents a nonlinear state space model of the form

˙ (t) = f (x(t), �, T∞(t), u(t)), t > 0, (11)

1 Here, l denotes for the liquid phase and is thus relevant for 
.
Cp Heat capacity of cell material (J kg K )
Ael Electrode plate area (m2)
volc,a Vol. fraction of positive active mat. a (−)

y(t, �) = h(x(t), �, T∞(t), u(t)), t ≥ 0. (12)

In this context, the system’s state vector is defined by x(t) =
[q̄a(t), q̄c(t), c̄a(t), c̄c(t), T(t), c∗2,1(t)]T , the scalar input byu(t) = I(t),
and the parameter vector by �. The output vector is found as

y(t, �) =
[
T(t),U(x(t), �)

]T
. The cell terminal voltage U(x(t), �) is

obtained by a reformulation of the Butler–Volmer kinetics Eq. (A.6)
as described in Appendix B. The model states c̄a(t) and c̄c(t) are mea-
sures for the SOC, see also Appendix B for a detailed discussion on
that issue. The ambient temperature T∞(t) is considered as a time-
variant parameter since it can be adjusted using an experimental
set-up with a climate chamber.

The complete set of parameters � of Eqs. (11) and (12) can be
found in Tables 3–6. They are classified into fixed geometric and
design-specific parameters, see Table 3, physical constants, see
Table 4, thermodynamic, kinetic, as well as internal parameters,
see Table 5, and finally semi-empiric parameters, see Table 6. The
a

�c Porosity of positive insertion material (−)
rkaa Reaction rate constant for neg. reaction (−)
rkac Reaction rate constant for pos. reaction (−)

 Conductivity of electrolyte phase (Sm−1)
Del Electrolyte diffusion coeff. (m2 s−1)
htc Convective heat transfer coeff. (W m−2 K−1)
�rad Heat rad. transf. coeff. for cell casing (−)
c0 Avg. electrolyt. concentration of Li+ (mol m−3)
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Table 6
Semi-empiric parameters.

Parameter Description

ˇ Coefficient for electrolyte concentration (−)
ac,i Coefficients for cathode OCP (−)
aa,i Coefficients for anode OCP (−)
�a Coefficient for anode diffusion (−)
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�c Coefficient for cathode diffusion (−)
ıa Coefficient for anode diffusion (−)
ıc Coefficient for anode diffusion (−)

. Structured model parameterization

The identification of the model parameters � in Eqs. (11) and
12) according to Tables 5 and 6 is approached by means of a non-
inear optimization problem, as specified in Section 4.1. In order
o improve the estimation quality, the optimization is further per-
ormed in combination with a parameter analysis [17] discussed in
ection 4.2.

.1. The nonlinear optimization problem of parameter estimation

The nonlinear optimization problem for the parameter identifi-
ation is set up by means of a least-squares framework. Therefore,
he objective function L can be derived from the Maximum-
ikelihood method [30], i.e.

in L(�) = min
1
2

2∑
�=1

V∑

=1

N∑
w=1

(ŷ�(tw) − y�(tw, �))2

�2
�(�)

, (13)

n dependence of the data points ŷ�(tw), w = 1, . . . , N of 
 =
, . . . , V experiments, and the model outputs y�(tw, �), � = 1,2 in
q. (12). The covariance estimates �2

�(�) [31] for each 
 are deter-
ined according to

2
�(�) = 1

N − N�

N∑
w=1

(ŷ�(tw) − y�(tw, �))2, (14)

here N� is the number of parameters. Additional constraints can
e incorporated as a penalty in the objective function L(�).

.2. The method of combined analysis and identification

In this section, an algorithm for the analysis of the identifia-
ility of the parameters [17,31] is introduced. It is applied to the
arameter estimation problem of secondary lithium-ion cells for
he first time. This approach excludes unidentifiable, i.e. insensitive
arameters from the optimization in dependence of the respective
easurement information. Thus, the overall identification quality

f the remaining parameters is increased.

.2.1. Parameter analysis based on Fisher-information matrix
nd parameter sensitivities

Considering the parameter vector � of the system Eqs. (11) and
12), the deviation of the estimate �̂ from the true value �∗ can be

easured by the covariance matrix cov �̂ [32]. Its lower bound is
iven by means of the Cramér–Rao inequality [33,34]

ov �̂ ≥ F−1
info(�∗) (15)

−1
ith the inverse Fisher-information matrix Finfo. It is defined as
32,34]

info(�∗) = E
{
∂2

∂�2
Vp(�)

}∣∣∣∣
�=�∗

(16)
ources 195 (2010) 5071–5080 5075

and denotes the expectation value E{·} of the expression Vp =
− lnp(�) for the true parameter set �∗, with p(�) representing
the probability density function [30,32]. Practically, the Fisher-
information matrix can be computed by

Finfo(�) =
N∑
w=1

STy |w

⎡
⎢⎢⎢⎢⎣

1

�2
1,w

0

. . .

0
1

�2
N�,w

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
C−1
t,w

Sy|w, (17)

where Sy|w are the output sensitivities of the parameters and Ct,w =
diag(�2

t,w) is the covariance matrix of the measurements. State and
output sensitivities are defined as

Sx = ∂x

∂�
, Sy = ∂y

∂�
. (18)

Both are calculated using the sensitivity differential equations
(SDEs) [35,36] according to

Ṡx = ∂f

∂x
Sx + ∂f

∂�
, t > 0, Sx(0) = ∂x0

∂�
(19)

Sy = ∂h

∂x
Sx + ∂h

∂�
, t ≥ 0. (20)

The Fisher-information matrix Eq. (17) is now utilized for the analy-
sis of the contribution of individual parameters �i to the estimation
quality of the nonlinear optimization problem Eq. (13), see [31]
for instance. In order to employ the Fisher-information matrix Eq.
(17) for the assessment of the identifiability of the parameters, the
Cramér–Rao inequality Eq. (15) is transformed to

cov(�̃ − �∗) ≥ D−1
F = diag

(
1
�n

)
(21)

with �̃ denoting for the vector of uncorrelated parameters in the
transformed space and the diagonalized Fisher-information matrix
DF = ZTFinfoZ. The identifiability of each untransformed parameter
is then measured by its contribution to a respective transformed
variance �̃2

n whose lower boundary is estimated by the eigenvalues
of DF , i.e.

�̃2
n ≥ 1

�n
. (22)

For a detailed discussion on the presented parameter analysis algo-
rithm the interested reader is referred to [17].

4.2.2. Parameter group assignment
The consideration of insensitive parameters with large vari-

ances in the optimization problem Eq. (13) is known to decrease
substantially the overall estimation quality [17,31]. Therefore,
the parameter analysis together with a corresponding group
assignment [17,31] eliminates insensitive parameters �i from the
identification step. Only those parameters whose variances are
below a fixed boundary are identified together [17]. The first group,
representing the optimization variables during the identification
step, is determined as follows [17,18].

The parameter �i, which accounts for the largest share to the
largest transformed variance �2

n,max and thus, for the smallest
eigenvalue �min of the diagonalized Fisher-information matrix Df

is excluded from the optimization Eq. (13) if �min violates the con-
dition√

1
�min

≤ � (23)
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Table 7
Experiments used for the parameter identification of the model.

Exp. 
 ϑ
/(h) |Î
(t)|/(C) �̂T∞,
(t)/(K) �̂T
(t)/(K)

1 100 1/60 ≈ 0 ≈ 0
2 1.25 1.8 32 32

eters according to Eq. (23), see the corresponding group assignment
in Table 8. The last three columns of Table 8 show that an addition of
measurements, i.e. from

∑4

=1 to

∑5

=1, does not further increase

the number of parameters in the first group from a certain point on.

Table 8
Group assignment of parameters w.r.t. the test Eq. (23).∑



of experiments conducted 1 2 3 4 5

E0,a 18 1 1 1 1
E0,c 4 1 1 1 1
E0,l 15 1 1 1 1
Ra 16 2 1 1 1
Rc 2 2 2 2 2
Ds,a 10 1 1 1 1
Ds,c 1 1 1 1 1
�a 1 1 1 1 1
�c 1 1 1 1 1
rkaa 19 3 3 2 2
rkac 5 1 1 1 1

 6 1 1 1 1
Del 9 1 1 1 1
htc 12 1 1 1 1
�rad 14 2 2 2 2
c0 8 2 2 1 2

aa,1 1 2 1 1 1
ac,1 2 2 2 2 2
ac,2 1 1 1 1 1
ac,3 1 1 1 1 1
ac,3+1 1 1 1 1 1
ac,3+2 2 1 1 1 1
ac,4 2 2 2 2 2
ac,4+1 1 1 1 1 1
ac,4+2 1 1 1 1 1
ac,5 2 2 2 2 2
ac,5+1 1 1 1 1 1
ac,5+2 1 1 1 1 1
076 A.P. Schmidt et al. / Journal of P

ith the fix boundary value � . The untransformed Fisher-
nformation matrix Finfo is then reduced by the row and the column
ontaining to the most uncertain parameter �i. This is achieved
y examining the eigenvector that belongs to �min. The just out-

ined procedure is repeated until all variances �2
n are smaller than

, which corresponds to the fixing of the first group. The same pro-
edure is then applied to all recently excluded parameters until
very single parameter �i of the whole set is assigned to a cer-
ain group. For a detailed description of the grouping algorithm the
eader is referred to [31]. After obtaining an optimization result
or parameters within the first group, the analysis and the group
ssignment are repeated. The termination of the entire algorithm
17,18,31] is reached by means of an unchanged set �1st , which is
quivalent to the fact that all parameters which are identifiable
ccording to Eq. (23) have been estimated. Thus, the information
ontent of the underlying measurement data has been completely
xploited. To achieve further improvements in both the number
f identifiable parameters �1st and the overall estimation quality,
dditional measurements are necessary. It is worth mentioning
hat these can be obtained with a respective design of experiments
17,31,37–41].

. Application of the parameterization scheme to the
odel and results

The parameterization of the proposed cell model according to
ection 3 by use of the combined analysis and identification method
s presented in Section 4 is discussed. Therefore, additional tech-
ical prerequisites and the parameterization itself are outlined in
ection 5.1. Subsequently, the achieved prediction quality of the
roposed model Eqs. (11) and (12) for realistic operating condi-
ions is discussed in Section 5.2 by comparing the model to the

easurement data of a cell. Currents I(t) are given in terms of the
ommonly used C-rate [19].

.1. Application of the combined parameter analysis and
dentification

First, the simultaneous solution of the system and the sensitivity
quations is outlined. The proper choice of experiments [39] is then
iscussed with respect to the identifiability of parameters.

.1.1. Simultaneous solution of the model and the sensitivities
For a given measurement the variances�2

� are computed accord-
ng to Eq. (14). Within this work the state-dependent Jacobians
f the system Eqs. (11) and (12) have been derived analytically
sing the computer-algebra tool Mathematica [42]. Both the SDEs
qs. (19) and (20) and the system Eqs. (11) and (12) are then
mplemented in the simulation environment Matlab/Simulink [43]
nd are solved simultaneously. The simulation time2 for a set of
xperiments as outlined in the next section is in the range of a
ew seconds for the pure model Eqs. (11) and (12) and in the
ange of 1 − 3 minutes for the sensitivities Eqs. (19) and (20).
he initial set �init is taken in part from the corresponding liter-
ture [3–14,19,20,24,44–50] and is partially found by best practice.
he choice of the variance boundary � represents one degree of

reedom. It was set to � = 0.15, as proposed in [17]. The opti-

ization itself is conducted using the Matlab-based tool MOPS
Multi-Objective Parameter Synthesis) [51]. Its included pattern
earch algorithm [52] has been employed.

2 On a PC with an Intel Centrino Duo processor.
3 1.25 0.5 10 10
4 3.61 16 ≈ 0 ≈ 62
5 3.89 8 ≈ 0 ≈ 40

5.1.2. Model parameterization with five experimental data sets
The cell was stimulated with the input signals u
(t) = I
(t), 
 =

1, . . . ,5, t ∈ϑ
 = [0, tend,
] and the manipulated ambient tempera-
ture signals T∞,
(t) of the climate chamber. The index 
 represents
the respective experiment. The experiments 
 = 1,4,5 were con-
ducted with constant ambient temperature, while it was varied for
the experiments 
 = 2,3. The five experiments can be characterized
according to their durationϑ
 , the maximum applied current |Î
(t)|,
the maximum applied variation of ambient temperature �̂T∞,
(t),

and the maximum temperature variation �̂T
(t) of the cell itself,

see Table 7. Both temperature ranges, �̂T∞,
(t) and �̂T
(t), are
related to room temperature, i.e. T∞ = 298K , as a reference.

The parameter identification is started with one experiment

 = 1. Then additional measurements 
 = 2, . . . ,5 are added. This
procedure successively increases the number of identifiable param-
ˇ 7 3 2 1 1
�a 17 5 1 1 2
�c 11 3 3 1 2
ıa 13 4 1 1 1
ıc 3 1 1 1 1

Dimension of �1st 11 20 24 27 24

No. of groups 19 5 3 2 2
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ig. 4. Pulsed low-rate discharge of the cell with intermediate relaxation phases.

he group assignment listed in Table 8 shows that the uncertainty
f a number of parameters is slightly above the test criterion Eq.
23), they remain in the second group. Since an easing of the test
riterion would decrease the overall estimation quality, the authors
ecided to leave these parameters at their initial values. Since the

dentifiability of parameters is dependent on system stimuli, the
ensitivity of these parameters could be improved by a respective
esign of experiments [31].

The plots shown in Figs. 4–9 have been obtained with one unique
et of 33 parameters computed by the identification of the five
ifferent experiments according to Tables 7 and 8.

.2. Comparison of model simulations and real cell experiments

The comparison of the identified cell model Eqs. (11) and (12)
s conducted with the measurement data of the experiments 
 as
isted in Table 7. The focus is on discussing phenomenologically
nteresting excerpts of the experiments 
 of Table 7 rather than on
he stringent explanation of all profiles 
 = 1–5.

.2.1. Operating the cell in a very low current regime
First, a long-term pulsed discharge of the cell with I(t) = C/60

nd intermediate rest phases was conducted, as shown in Fig. 4.
ithin this experiment, mainly the open-circuit behavior of the

ell and the slow solid phase diffusion processes can be observed
ery well. Since the heat generation is negligible at I(t) = C/60, the
emperature development was not recorded. The ambient temper-
ture T∞ was fixed at 295 K in the laboratory. During the relaxation
hases, i.e. I(t) = 0, the diffusive balancing processes inside the
ctive materials are visible. Moreover, the two time constants of
he voltage relaxation vary with the SOCj . The SOC-dependent dif-
usion coefficients found for the anode and cathode active materials
ccording to Eq. (8) are depicted in Fig. 3.

.2.2. Operating the cell at varying ambient temperature levels
In order to investigate the cell behavior over a wide range of

he ambient temperature, the stimulation of the cell was extended
y T∞(t) as an additional manipulated variable, as shown in Fig. 5.
he current input was kept in a moderate regime. The temperature

evelopmentT(t) of the identified model is delayed to the one of the
easured cell, as the bottom plot in Fig. 5 shows. Further tempera-

ure modeling and also experimental improvements are therefore
ecessary in order to yield an increased prediction quality. This will
e done in future work.
Fig. 5. Current I(t) and ambient temperature T∞(t) as manipulated variables.

5.2.3. Operating the cell under potentiostatic conditions
The most common way to charge a secondary lithium-ion bat-

tery is the so-called constant current-constant voltage (CCCV)
procedure as outlined in [19], where the cell is driven in a gal-
vanostatic regime, i.e. I(t) = const., until the upper cut-off voltage
Uupper is reached, see Fig. 6. The terminal voltage U(t) is then con-
trolled w.r.t. the set-point U(t) = Uupper. Consequently, the current
I(t) decays with time until a pre-defined threshold is reached. The
cell is considered fully charged when the current I(t) falls below a
lower boundary of ≈ 0.1C in the CV phase. Thus, the performance of
the model under potentiostatic operating conditions can be investi-
gated by the comparison of a measured CV phase and the respective
open-loop simulation, as shown in Fig. 6.

5.2.4. Conducting the manufacturer’s standard test profile
The standard test for the investigated lithium-ion cell includes

the cycling of the device with an 8C discharge followed by a
3C–4.1V–CCCV charge section, see Fig. 7. The cell undergoes a self-
heating of approximately 35 K during the discharge phase. Since the
profile was recorded twice within the same experiment, a typical
behavior of secondary lithium cells is shown in Fig. 7: The shape of
the 8C discharge terminal voltage curve is different at each cycle.

This is not a matter of measurement errors or uncertainties, but
the result of reversible degradation. Therefore, a pre-cycling with
just this profile was conducted before recording the experiments

 = 1–5 in order to guarantee a reproducible input/output behavior
of the cell. It was observed that the shape of the terminal voltage
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Fig. 8. Zoom of the windows I and II of the center part of Fig. 7. Reversible degrada-
tion is observed within the first 5–10 cycles after a longer rest phase.
ig. 6. Current profile during a CCCV charge and the resulting absolute voltage error
eU | between the measured cell and the model.
urve during discharge continues to change within 5–10 so-called
ake-up cycles. Two of them are depicted in Fig. 8. A similar effect

f history-dependent charge and discharge behavior was recently
eported in [53], but in context with another cell chemistry.

ig. 7. Standard test cycle of the manufacturer. An 8C discharge phase is followed
y a CCCV charge.
Fig. 9. Maximum-rate discharge. A current I(t) = 16C discharges the cell within less
than 3 min.

5.2.5. Operating the cell with maximum discharge current
The maximum applied discharge current of I(t) = 16C, as shown

in Fig. 9, not only causes a harsh voltage drop but also heats the cell
by more than 60 K within approximately 3 minutes. The ambient
temperature is maintained at T∞ = 295 K. The instantaneous volt-
age drop is followed by a relaxation unless the current is kept at
16C. This is caused by the self-heating of the cell, see Section 3.3.
The result is an effectively lowered internal resistance (i.e. faster
kinetics) leading to a higher terminal voltage even though the SOC
decreases continuously.

6. Summary and conclusion

The incorporation of the most relevant physical effects into a
lumped parameter electrochemical lithium-ion cell model was pro-
posed. This procedure yields an excellent reproduction of a real
battery’s transient and static input/output behavior even though
the input is varied by three orders of magnitude. Nevertheless,

a simple and real-time capable model structure is maintained.
Utilizing the combined parameter analysis and identification, a
small set of experiments is chosen. These few measurements allow
the proper parameterization for the whole operating range of the
device under test. Summarizing the presented work, the proposed
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odel is a promising candidate for the implementation in onboard
attery control units. This is due to its small simulation time of a
ew seconds on a PC and quick adaptability to various chemistries
f intercalation cells. The inherent physical parameters build a
rofound basis for the incorporation of reversible and irreversible
egradation effects. The latter is unavoidable for sophisticated
ractical applications.

cknowledgements

We thank Steffen Benzler and Özgür Can Celik for their contri-
utions to this publication in the course of their diploma [38] as
ell as master thesis [54]. The support by Heiko Pape, Jörg Pöhler

nd Bernd Aupperle during cell experiments is acknowledged. This
ork was funded by Robert Bosch GmbH, Stuttgart.

ppendix A. Reference model equations

The following set of equations was first proposed in [5] whereas
he theoretical background can be found in [4,55] for instance.

solid phase mass balance for the lithium-ion concentration
1,j(z, r, t) along the radii of the particles is given by

∂c1,j
∂t

= Ds,j ·
(
∂2c1,j
∂r2

+ 2
r

· ∂c1,j
∂r

)
(A.1)

ith the boundary conditions ∂c1,j/∂r|r=0 = 0 and ∂c1,j/∂r|r=Rj =
Ds,j/jj . In the electrolyte phase, the mass balance for lithium-ion

oncentration c2,j(z, t) is determined by

∂c2,j
∂t

= 1
�j

· ∂
∂z

(
Dj ·

∂c2,j
∂z

+ � · i2,j
)

(A.2)

ith the boundary conditions ∂c2,j/∂z|z=0,htot = 0. The constant � is
efined as � = (1 − t0+)/F . The corresponding solid phase potential
1,j(z, t) is found as

= −∂˚1,j

∂z
+ 1
�j

(
i2,j −

I(t)
Ael

)
(A.3)

nd the electrolyte phase potential˚2,j(z, t) is given by

= −∂˚2,j

∂z
− i2,j



+ RT �
(

1 + ∂ ln fj
∂ ln c2,j

)
∂

∂z

(
ln c2,j

)
. (A.4)

he spatial current distribution i2,j(z, t) is calculated by means of
he local reaction rate jj(z, t) and reads as

= −∂i2,j
∂z

+ as,j F jj, (A.5)

here as,j is the active surface area. The charge transfer is described
y the Butler–Volmer reaction kinetics

= jj −
si
n
i0,j

[
exp(−˛c�j) − exp(˛a�j)

]
(A.6)

ith the transfer coefficients ˛j and the arguments �j(z, t) accord-
ng to

j = F

RT
(˚1,j −˚2 − Uocp,j − RSEI,j · jj), (A.7)

here i0,j(z, t) is the exchange current density.

ppendix B. Terminal voltage, state of charge and power
apability
According to [5], the terminal voltage of the cell is determined
y the solid phase potential difference, i.e.

(t) = ˚1,c(z = htot, t) −˚1,a(z = 0, t). (B.1)
ources 195 (2010) 5071–5080 5079

With the common assumption of equal transfer coefficients, i.e.
˛a = ˛c = 0.5 [4–6,44], Eq. (A.6) can be solved explicitly for ˚1,j
[56], i.e.

˚1,j(t) = Uocp,j(SOCj) +˚2,j(c2,j, I(t))

−2RT
F

Arsinh (
Rj

2 i0,j(c1,j, c2,j) F hj as,j Ael
I(t)),

(B.2)

where the term i0,j(c1,j, c2,j, rkaj) denotes the exchange current
density. The variable Uocp,j(SOCj) is the open circuit potential of the
respective electrode, which is proposed as

Uocp,j = aj,1 − aj,2 · SOCj −
Nocp∑
i=1

aj,3i · tanh

(
SOCj − aj,3i+1

aj,3i+2

)
, (B.3)

with the constant coefficients aj,i. In contrast to [8], the sole usage
of structurally identical tanh terms for both electrodes guarantees a
strict monotonicity for the empiric approach Eq. (B.3). Furthermore,
by the appropriate choice of the coefficients aj,i the impact of single
summands is limited to a specified SOC range. This fact ensures a
unique solution of the parameter estimation task as formulated in
Section 4. For reasons of simplicity Uocp,a was fixed to the shape of
a typical mesocarbon microbead (MCMB, a graphitic carbon) anode
[50] and thus was excluded from the identification.

The particle surface lithium-ion concentration c1,s,j in Eq. (2)
denotes the short-term state of charge as

SOCj = c1,s,j
ĉj
, (B.4)

which is related to the immediately accessible charge. It can also
be regarded as a measure of the currently available power. Here,
ĉj = Cj �j as,j is the material-specific maximum concentration. By
contrast, the classic definition of SOC, e.g. as discussed in [19,57],
corresponds to

SOCj = c̄1,j
ĉj
, (B.5)

where the totally stored charge is considered by means of the aver-
aged lithium-ion bulk concentration c̄1,j . For I(t) = 0, the surface
concentration c1,s,j , j∈ a, c settles to the average bulk material con-
centration c̄1,j according to Eqs. (1) and (2), i.e. SOCj,stat = SOCj,stat.
Consequently, the resulting open circuit potential Uocp,j(c1,s,j) is a
direct measure of the residual amount of stored charge for a cell in
the relaxed condition of dU(t)/dt = 0 and I(t) = 0.

Appendix C. Modal solution of the electrolyte lithium-ion
concentration

Assuming that � := �a = �s = �c and D := Da = Ds = Dc , the
expression in Eq. (A.2) can be rewritten as

∂c2
∂t

= 1
�
D
∂2c2
∂z2

+ �

�
∂i2
∂z

(C.1)

with z ∈ (0, htot), see Fig. 1, the boundary conditions of Eq. (A.2),
and the initial condition c2(z,0) = c2,0(z). Eq. (C.1) can be solved
analytically utilizing a modal transformation [21] as described in
the following. The modal transformation is defined as

c∗2,k(t) =
∫ htot

0

 k(z) · c2(z, t)dz, k = 0,1,2, . . . (C.2)

with the adjoint spatial eigenfunction k(z) [58]. Applying Eq. (C.2)
to Eq. (C.1), one obtains
∫ htot

0

 k
∂c2
∂t
dz︸ ︷︷ ︸

dc∗
2,k
/dt

= D

�

∫ htot

0

 k
∂2c2
∂z2

dz + �

�

∫ htot

0

 k
∂i2
∂z
dz.︸ ︷︷ ︸

=:i∗
2,k

(t)

(C.3)
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he subsequent dual partial integration of the second term in Eq.
C.3) leads to
htot

0

D

�
 k(z) · ∂

2c2
∂z2

dz = �k ∗
k(t) (C.4)

ith the boundary conditions ∂c2/∂z|z=0,htot = 0 and
 k/∂z|z=0,htot = 0 according to the boundary conditions of
q. (A.2). The variable �k denotes the spatial eigenvalues as pro-
osed in [21]. Hence, in modal coordinates c∗2,k, k∈N0, Eq. (C.1) is
quivalent to an infinite-dimensional system of ODEs, i.e.

dc∗2,k
dt

= �kc∗2,k(t) + �

�
i∗2,k(t), t > 0 (C.5)

ith the modal inputs i∗2,k specified in Eq. (C.3) and the modal initial
onditions

∗
2,k(0) = c∗2,k,0 =

∫ htot

0

 k(z) · c0(z)dz. (C.6)

q. (C.5) can easily be solved either analytically or numerically,
eading to the solution c∗2,k(t) in the modal domain. The final result
s then obtained by conducting the inverse modal transformation
ccording to Eq. (6).

eferences

[1] Proceedings of the Ninth International Advanced Automotive Battery & EC
Capacitor Conference (AABC), Advanced Automotive Batteries, Long Beach, CA,
2009.

[2] Proceedings of the Fifth International Symposium on Large Lithium Ion Battery
Technology And Application (LLIBTA), Advanced Automotive Batteries, Long
Beach, CA, 2009.

[3] G. Sikha, B. Popov, R. White, J. Electrochem. Soc. 151 (7) (2004) A1114.
[4] J. Newman, K. Thomas-Alyea, Electrochemical Systems, 3rd ed., Wiley-

Interscience, Hoboken, NJ, 2004.
[5] M. Doyle, T.F. Fuller, J. Newman, J. Electrochem. Soc. 140 (1993) 1526–1533.
[6] T.F. Fuller, M. Doyle, J. Newman, J. Electrochem. Soc. 141 (1994) 1–10.
[7] T. Fuller, M. Doyle, J. Newman, J. Electrochem. Soc. 141 (4) (1994) 982–990.
[8] M. Doyle, J. Newman, A. Gozdz, C. Schmutz, J. Tarascon, J. Electrochem. Soc. 143

(6) (1996) 1890–1903.
[9] P. Arora, M. Doyle, R. White, in: S. Surampudi, R. Marsh (Eds.), Lithium Batteries

Symposium, vol. 98, ECS, Pennington, 1999, pp. 553–572.
10] G. Botte, V. Subramanian, R. White, Electrochim. Acta 45 (2000) 2595–2609.
11] V.R. Subramanian, J.A. Ritter, R.E. White, J. Electrochem. Soc. 148 (2001)

E444–E449.
12] G. Sikha, R. White, B. Popov, J. Electrochem. Soc. 152 (8) (2005) A1682–A1693.
13] M. Johan, A. Arof, J. Power Sources 170 (2007) 490–494.
14] S. Santhanagopalan, Q. Guo, R. White, J. Electrochem. Soc. 153 (3) (2007)

A198–A206.
15] B. Haran, B. Popov, R. White, J. Power Sources 75 (1998) 56–63.
16] S.P. Asprey, S. Macchietto, J. Process Contr. 12 (2002) 545–556.
17] C. Majer, Parameterschaetzung, Versuchsplanung und Trajektorienopti-

mierung fuer verfahrenstechnische Prozesse, Fortschritt-Berichte, No. 3/538,
VDI Verlag, Duesseldorf, 1998.

18] M. Bitzer, Parameteranalyse, -identifikation und Versuchsplanung am Beispiel

eines Fedbatch-Fermentationsprozesses, student research project, Institute of
System Dynamics and Control, University of Stuttgart, Stuttgart, 1996.

19] A. Jossen, W. Weydanz, Moderne Akkumulatoren richtig einsetzen, 1st ed.,
Printyourbook, Germany, 2006.

20] V.R. Subramanian, V.D. Diwakar, D. Tapriyal, J. Electrochem. Soc. 152 (2005)
A2002–A2008.

[
[

[
[

Sources 195 (2010) 5071–5080

21] E.-D. Gilles, Systeme mit verteilten Parametern, Oldenbourg, Munich, 1973.
22] M. Guo, K. Kumaresan, G. Sikha, R.E. White, in: Proceedings of the 213th ECS

Meeting, abstract available only, 2008.
23] A. Schmidt, Simulation and state estimation of Li-ion batteries for HEV appli-

cations, Master’s thesis, Swiss Federal Institute of Technology (ETH) Zurich,
Zurich, 2007.

24] P. Albertus, J. Christensen, J. Newman, J. Electrochem. Soc. 156 (7) (2009)
A606–A618.

25] H. Mehrer, Diffusion in Solids, 1st ed., Springer, Berlin, 2007.
26] D. Bernardi, E. Pawlikowski, J. Newman, J. Electrochem. Soc. 132 (1) (1985)

5–12.
27] E.-U. Schluender, VDI-Waermeatlas, 8th ed., Verein Deutscher Ingenieure, VDI-

Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC), 1997.
28] H.-D. Baehr, K. Stephan, Waerme- und Stoffuebertragung, 3rd ed., Springer,

Berlin, 1997.
29] C.E. Mortimer, U. Mueller, Chemie: das Basiswissen der Chemie, 7th ed., Georg

Thieme Verlag, Stuttgart, 2001.
30] V. Schmidt, Statistik II, Lecture Notes, University of Ulm, Ulm, 2006.
31] K. Schittkowski, Ind. Eng. Chem. Res. 46 (2007) 9137–9147.
32] R. Isermann, Identifikation dynamischer Systeme II. Besondere Methoden,

Anwendungen, 2nd ed., Springer, Berlin, 1992.
33] G.C. Goodwin, Identification: Experiment Design, in: System and Control Ency-

clopedia, Pergamon Press, Oxford, 1987.
34] L. Ljung, System Identification: Theory for the User, Prentice-Hall, Englewood

Cliffs, NJ, 1987.
35] H.K. Khalil, Nonlinear Systems, 3rd ed., Prentice-Hall, Upper Saddle River, NJ,

2001.
36] A. Saltelli, K. Chan, E.M. Scott, Sensitivity Analysis, 1st ed., Wiley & Sons, West

Sussex, 2000.
37] S. Koerkel, Numerische Methoden fuer Optimale Versuchsplanungsprobleme

bei nichtlinearen DAE-Modellen, PhD thesis, University of Heidelberg, Heidel-
berg, 2002.

38] S. Benzler, Kombinierte Parameteranalyse und -identifikation mit opti-
mierungsbasierter Versuchsplanung am Beispiel eines Diesel-Luftsystems und
eines Lithium-Ionen-Batterie-Modells, Diploma thesis, University of Stuttgart,
Stuttgart, 2008.

39] A.F. Emery, A.V. Nenarokomov, Meas. Sci. Technol. 9 (1998) 864–876.
40] A. Munack, C. Posten, at–Automatica 37 (2) (1989) 55–65.
41] W.G. Mueller, Collecting Spatial Data: Optimum Design of Experiments for

Random Fields, 3rd ed., Springer, Berlin, 2007, pp. 43–76.
42] http://www.wolfram.com/mathematica.
43] http://www.mathworks.com.
44] S. Santhanagopalan, Q. Guo, P. Ramadass, R. White, J. Power Sources 156 (2005)

620–628.
45] K. Smith, C. Rahn, C. Wang, Energy Convers. Manage. 48 (2007) 2565–2578.
46] D. Abraham, in: M. Broussely (Ed.), Third International Symposia, Large Lithium

Ion Battery Technology And Application (LLIBTA), 2nd ed., Advanced Automo-
tive Batteries, USA, 2007.

47] S. Santhanagopalan, R. White, J. Power Sources 161 (2006) 1346–1355.
48] D.P. Abraham, S. Kawauchi, D.W. Dees, Electrochim. Acta 53 (2008) 2121–2129.
49] G. Botte, B. Johnson, R. White, in: S. Surampudi, R. Marsh (Eds.), Lithium Bat-

teries Symposium, vol. 98, ECS, Pennington, NJ, 1999, pp. 526–552.
50] T. Zheng, J. Reimers, J. Dahn, Phys. Rev. B 51 (1995) 734–741.
51] H.-D. Joos, MOPS – Multi-objective parameter synthesis user’s guide v5.0, User’s

Guide, DLR, Institut fuer Robotik und Mechatronik, Oberpfaffenhofen, 2007.
52] M.J.D. Powell, in: A. Iserles (Ed.), Acta Numerica, vol. 7, Cambridge University

Press, Cambridge, MA, 1998, pp. 287–336.
53] M.A. Roscher, J. Vetter, D.U. Sauer, J. Power Sources 191 (2009) 582–590.
54] C. Celik, Automated parameter identification & optimization based design of

experiments for the efficient parameterization of dynamic models of lithium-
ion cells, Master’s thesis, Hamburg University of Technology (TUHH), Hamburg,
2009.
55] K. Kumaresan, G. Sikha, R.E. White, ECS Trans. 3 (27) (2007) 173–190.
56] I.N. Bronstein, K.A. Semendjajew, G. Musiol, H. Muehlig, Taschenbuch der Math-

ematik, 4th ed., Verlag Harri Deutsch, Frankfurt a.M., 1999.
57] S. Piller, M. Perrin, A. Jossen, J. Power Sources 96 (2001) 113–120.
58] R. Courant, D. Hilbert, Methoden der mathematischen Physik, 4th ed., Springer,

Berlin, 1993.

http://www.wolfram.com/mathematica
http://www.mathworks.com

	Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell
	Introduction
	State-of-the-art electrochemical battery modeling
	Physical background and first principle modeling
	The single particle (SP) model

	New extensions to the SP model
	Approximate solution for the electrolyte potential and the electrolyte lithium-ion concentration
	SOC-dependent apparent diffusion in the solid
	Balance equation for the temperature considering radiation
	Arrhenius-type temperature correction for the reaction kinetics

	Nonlinear model structure

	Structured model parameterization
	The nonlinear optimization problem of parameter estimation
	The method of combined analysis and identification
	Parameter analysis based on Fisher-information matrix and parameter sensitivities
	Parameter group assignment


	Application of the parameterization scheme to the model and results
	Application of the combined parameter analysis and identification
	Simultaneous solution of the model and the sensitivities
	Model parameterization with five experimental data sets

	Comparison of model simulations and real cell experiments
	Operating the cell in a very low current regime
	Operating the cell at varying ambient temperature levels
	Operating the cell under potentiostatic conditions
	Conducting the manufacturer’s standard test profile
	Operating the cell with maximum discharge current


	Summary and conclusion
	Acknowledgements
	Reference model equations
	Terminal voltage, state of charge and power capability
	Modal solution of the electrolyte lithium-ion concentration
	References


